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Abstract
The ultrafast transient transport in wide-gap polar III-nitride semiconductors in
electric fields is considered. A nonlinear and time-dependent (on the evolution
of the nonequilibrium-irreversible thermodynamic state of the system) Drude-
like law is derived, with the conductivity related to a so-called transport time (or
current characteristic time which is related to a memory-dependent momentum
relaxation time). From the collision operators, present in the evolution equations
for the carriers’ energy and momentum, are obtained quantities playing the
role of time-dependent energy and momentum relaxation times. The electron
drift velocity overshoot at intermediate-intensity fields in GaN, AlN and InN is
evidenced, and its onset is explained as a result of the interplay of momentum
and energy relaxation times.

1. Introduction

The recent successful commercialization of III-nitride-based light-emitting diodes in the blue–
yellow range, and the development of injection lasers and ultraviolet detectors, initially drove
the focus of basic research on these wide-gap semiconductors to the understanding of their
optical properties [1–4]. However, soon their favourable properties for the implementation
of electronic-power devices, high-performance and high-frequency transistors [5–9], with
superior characteristics than those based on silicon [10, 11], was also recognized. The efforts
undertaken in the investigation of the III-nitride steady-state transport properties, looking for
a better determination of bulk material parameters and band structure [12], are relevant for
establishing their figure of merit for electronic devices with certain confidence. However,
despite the improved understanding of the steady-state transport properties of III-nitrides
obtained in the last few years, the agreement of the carriers’ mobility data with theoretical
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descriptions varies from broad to very good [13]; only a qualitative agreement was obtained
between theoretical predictions and the recent measurements of the electron velocity-field
characteristics in GaN [14].

Focus on the improvement of III-nitride-based devices with submicron channels has
stimulated research on their transient–transport properties, since in this case the carriers may
not attain the steady-state transport regime. The possibility of transient ballistic transport in
GaN was demonstrated to occur for applied electric fields greater than 140 kV cm−1 [15], and
investigations on the transient–transport regime, have indicated the possibility of existence of
an overshoot effect in both the electron drift velocity [16–19] and mean energy [19]. In the
work of [19], the explanation for the existence of the overshoot effect in the III-nitrides, in
conditions where intervalley scattering is negligible, was considered to be due to the interplay of
energy and momentum relaxation times: no overshoot occurs when the momentum relaxation
time, which is smaller than the energy relaxation time shortly after application of the electric
field, becomes predominantly larger than the other; on the other hand, the overshoot follows at
intermediate to high fields when the relaxation time for energy remains larger than the one for
momentum. But, no detailed explanation was presented confirming the validity of the above
arguments.

In this paper we present one such detailed derivation, obtaining analytical expressions
for the so-called characteristic time for conduction (or current) and the momentum relaxation
time, from which the conditions for the onset of the electron drift velocity overshoot, in the case
of these polar semiconductors in the parabolic conduction-band approximation, can be clearly
evidenced. For that purpose we obtain the equations of evolution for the energy of electrons and
longitudinal-optic and acoustic phonons, Ec(t), ELO(t), EAC(t) (the transverse-optic phonons
are ignored, since they weakly interact with the electrons in the conduction band), and
the electrons’ momentum P(t). They are built within the framework of a nonequilibrium
statistical ensemble formalism (NESEF for short [20]), which provides an elegant, practical,
and physically clear picture for describing irreversible processes [21], as for example in
semiconductors far from equilibrium, which is the case considered here.

It can be noticed that the theory of transport went through different approaches along
the past century, in a continuous process of improvement (the origin goes back to the
fundamental work of the great Ludwig Boltzmann). Such approaches have been classified
by Robert Zwanzig in [22]. At present we may mention the two at the front line, namely,
the nonequilibrium molecular dynamics (NMD for short), and the kinetic theory based on
the NESEF, as indicated above. In particular, NMD is in the present case referred to as the
Monte Carlo approach. Both approaches have advantages and shortcomings in their general
formulation, but in the case of charge transport in semiconductors (as it the one treated here)
they appear as equivalent in the sense of providing, for several cases considered, numerical
results that are very similar: some examples are presented in [23]. The NESEF-based transport
theory as here used can be considered as a particular formulation of Boltzmann’s original
theory [24] involving a kind of Grad’s moment approach of solution [25]. It is a result of
averaging over the nonequilibrium statistical ensemble the mechanical Heisenberg equations of
motion for the observables relevant for the problem in hand. Zwanzig stated that the formalism
has by far the most appealing structure and may become the most effective method for dealing
with nonlinear transport process [22].

Through the numerical solution of the associated nonlinear quantum transport equations
based on the NESEF, we characterize the conditions for the onset of the electron velocity
overshoot in wurtzite GaN, AlN, and InN in the presence of electric fields of low to intermediate
intensities, when it is possible to neglect intervalley electron scattering effects, which are
present at high fields. We have estimated these limiting values as being of the order of
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Figure 1. Evolution towards the steady state of the electron drift velocity in GaN (top), AlN
(middle), and InN (bottom).

120 kV cm−1 for GaN and AlN, and 50 kV cm−1 for InN (see figures 1 and 2): these values are
confirmed for the cases of GaN and InN analysed in the work of Starikov et al [26], who are
using a Monte Carlo approach (see figures 1 and 2 in [26]). In all these domains of values of
the electric field the differential conductivity is monotonically increasing with the electric field
strength.

We obtain clear conditions for the overshoot onset of both the electron drift velocity and
the quasitemperature in GaN, AlN and InN for electric field strengths higher than 20 kV cm−1,
40 kV cm−1, and 20 kV cm−1, respectively.

2. Momentum and energy relaxation times

The study of transport properties of semiconductors under high level of excitation, eventually
following nonlinear laws, is of great interest not only for its relevance in the functioning of
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Figure 2. Evolution towards the steady state of the electron nonequilibrium temperature in GaN
(top), AlN (middle), and InN (bottom).

electronic and optoelectronic devices, but also because of providing an excellent testing ground
for theoretical ideas in the field of many-body systems in far-from-equilibrium conditions,
as we do here. In particular, nonlinearities that are present in both transport properties and
relaxation processes may give origin to new and interesting phenomena. As a general rule this
question of transport and optical properties of carriers (whose origin is in doping, type n or p,
or photoinjection when a double plasma of electrons and holes is produced) has been usually
dealt with by Monte Carlo computational methods. For the reasons stated before, we resort
here to the use of an analytical kinetic theory of a broad scope, the above-mentioned one based
on a nonequilibrium statistical ensemble formalism.

We consider the case of polar semiconductors described by a parabolic conduction-band
model (within the effective mass approximation, and ignoring conduction-band secondary
valleys—hence an upper limit on the strength of the electric field needs to be imposed, as
shown below), where a concentration of electrons, n, has been created by doping. A constant
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electric field of strength E in, say, the x-direction is applied, which accelerates these carriers
(‘hot’ carriers since the electric field drives them in the hot electron transport regime [27]),
while there follows a transferring of their energy and momentum (in excess of equilibrium) to
the phonon field. The sample is in contact with a thermal reservoir at temperature T0, with the
phonons being warmed up in scattering events involving Fröhlich, deformation potential, and
piezoelectric interactions with the hot carriers; scattering by impurities is also considered.

First we note that the Hamiltonian of the system is written as Ĥ = Ĥ0 + Ĥ1, where
Ĥ0 consists of the free Hamiltonians of the electrons and of the phonons, while Ĥ1 contains
the electron–phonon interactions, the anharmonic interactions among the phonons, and the
coupling with the external electric field. Coulomb interaction between carriers (contributing to
very fast—subpicosecond scale—relaxation processes) is incorporated in the random-phase
approximation. According to the formalism [20, 21], we need to choose the set of basic
variables which describes the macroscopic state of the system in the given conditions. The
first two basic variables are taken as the free Hamiltonians (the one of the electrons, Ĥe, and
those of the longitudinal-optic and acoustical phonons, ĤLO and ĤAC, respectively) and the
number of electrons, N̂e. Next, on account that the electric field produces a current, it is
introduced the electrons’ linear momentum P̂e (which is the flux of mass). The associated set
of basic macrovariables (that is, those which characterize the nonequilibrium thermodynamic
state of the system) are the average value of the dynamical quantities indicated above over the
corresponding nonequilibrium ensemble. They are denoted by

{Ee(t), Ne(t), Pe(t), ELO(t), EAC(t)}, (1)

and an equivalent thermodynamic representation can be done in terms of the associated
Lagrange multipliers that the variational method NESEF introduces, which constitute a set
of intensive nonequilibrium thermodynamic variables for which we write

{βe(t),−βe(t)μ
∗
e (t),−βe(t)ve(t), βLO(t), βAC(t)}. (2)

Here, β−1
e (t) = kBT ∗

e , β−1
η (t) = kBT ∗

η (t), with η = LO, AC, introducing the
quasitemperatures (nonequilibrium temperatures of the ‘hot’ systems [20, 21, 28]) of electrons
and of phonons in the different branches; μ∗

e (t) is the quasi-chemical potential, and ve(t) the
drift velocity.

We are now in a condition to derive the evolution of the nonequilibrium macroscopic
state of the system by solving the corresponding kinetic equations for the basic variables of
equation (1). We introduce the restriction of considering a good thermal contact of system
and reservoir, such that the acoustic phonons remain constantly in equilibrium with the latter
at temperature T0 (which we take as 300 K). Hence, we need to consider the set of coupled
equations of evolution given by

d

dt
Ee(t) = − eE

m∗
e

· Pe(t) + J (2)
Ee

, (3)

d

dt
Pe(t) = −V neeE + J(2)

Pe
, (4)

d

dt
ELO(t) = J (2)

ELO
(t) + ĖLO,AN(t), (5)

where V is the volume of the sample. In equation (3) the first term on the right accounts for
the rate of pumping of energy on the carrier system generated by the presence of the electric
field, while the second, J (2)

Ee
, represents the rate of excess energy transferred to the lattice’s

LO phonons (the interactions with the acoustic phonons can be neglected). In equation (4)
the first term on the right is the force produced by the presence of the electric field, and the
second, J (2)

Pe
the rate of momentum transferred to the LO phonons. In equation (5) we have the
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term of gain of energy pumped on the LO phonons by the ‘hot’ carriers, J (2)

ELO
, and the transfer,

via anharmonic effects, of such energy to the AC phonons (at temperature T0), ĖLO,AN(t), the
latter acting as a thermal bath. The detailed expressions for the different collision operators
are given elsewhere [29] (see the appendix); we recall that they are dependent on the intensive
nonequilibrium thermodynamic variables of equation (2). Hence, the equations of evolution
can be closed since the variables of equation (1), whose time derivatives appear on the left-
hand side, are related to those thermodynamic variables of equation (2) via the equations
(nonequilibrium equations of state in the NESEF-based statistical thermodynamics [20, 21])

Ee(t) =
∑

k

(h̄k2/2m∗
e ) f e

k (t) � Ne
[

3
2 kBT ∗

e (t) + 1
2 m∗

ev
2
e (t)

]
, (6)

Pe(t) =
∑

k

h̄k f e
k (t) � Nem∗

eve(t), (7)

ELO(t) =
∑

k

h̄ωq,LOνq,LO(t) = V

Vcell
h̄ωLOνLO(t), (8)

where f e
k (t) = Tr{c†

kckρ(t)} = [exp{βe(t)[εe
k − μ∗

e(t) − h̄k⊥ve(t)]} + 1]−1, with εe
k =

h̄2k2/2m∗
e , and we have used the approximation

f e
k (t) � 4ne

(
π h̄2βe(t)

2m∗
e

)3/2

exp

{
−βe(t)

2m∗
e

(h̄k − m∗
eve(t))

2

}
, (9)

valid in the usual experimental conditions [27, 29]. This is a time-dependent population which
has a form resembling a drifted Maxwell–Boltzmann distribution, resulting from neglecting 1 in
comparison with the exponential in the time-dependent Fermi–Dirac-like distribution indicated
above. This is possible in the statistically nondegenerate-like limit, namely, when it is satisfied
that n	3

T (t) � 1, where 	T (t) = h̄/
√

m∗kBT ∗
e (t) is the thermal de Broglie wavelength.

Moreover,

νLO(t) = Tr{b†bρ(t)} = [exp{h̄ωLO/kBT ∗
LO(t)} − 1]−1, (10)

is the time-dependent population of LO phonons, where ωLO is the dispersionless frequency for
LO phonons (Einstein model). Next, we define the time-dependent carrier-momentum, τPe(t),
and carrier-energy, τEe(t), relaxation times given by

J (2)
Pe

(t) ≡ −neV m∗
e

ve(t)

τPe(t)
, (11)

J (2)
Ee

(t) ≡ − Ee(t) − Eeq
e

τEe(t)
, (12)

where ve(t) is the drift velocity in the direction of the electric field, and Eeq
e the energy of

the carriers in equilibrium with the AC phonons at temperature T0, and the expressions for the
relaxation times are given in the appendix.

Using equations (4), (7), and (11) we find an equation of evolution for the drift velocity,
namely

d

dt
ve(t) = −(e/m∗

e)E− ve(t)

τPe(t)
, (13)

which is an equation of the Newton–Langevin type, but with a time-dependent relaxation time
(evolving in time with the macroscopic state of the system). Equation (13) can be alternatively
written in the form of an integral equation, namely,

ve(t) = −(e/m∗
e)τce(t)E, (14)

6
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where there is present what we call a characteristic time for conduction, namely

τce(t) = exp{−�e(t)}
∫ t

0
exp{�e(t

′)}dt ′, (15)

with

�e(t) =
∫ t

0
dt ′[τPe(t

′)]−1, (16)

which is a quantity depending, through τPe(t), on βe(t) and ve(t) (cf equation (11)), and we
have taken the initial condition ve(0) = 0. Moreover, defining the current density

Ie(t) = −neeve(t), (17)

after using equation (14), it takes the form

Ie(t) = σe(t)E, (18)

where we have introduced a time-dependent Drude-type conductivity given by

σe(t) = (nee
2/m∗

e)τce(t). (19)

Once again we stress that such time dependence comes from the evolution of the
nonequilibrium state of the system; that is, σe(t) and τce(t) depend on βe(t) and ve(t).

3. Explaining the onset of the drift velocity overshoot

For illustration let us consider the specific case of wurtzite-type GaN, AlN, and InN. We have
used for these materials the characteristic parameters (effective mass, phonon frequencies,
Fröhlich coupling strength, deformation potential strength, etc) available in the literature [18].
The electric field applied to GaN and AlN (InN) samples is restricted to be smaller than
120 kV cm−1 (60 kV cm−1) since for higher field strengths the intervalley scattering, not
considered in our calculations, can no longer be neglected. The doping concentration is taken
as 1.0 × 1017 cm−3, and a bath temperature of 300 K is used, which are the same as the values
used by Foutz et al [18] in their calculations.

Figures 1 and 2 show the evolution of the electron drift velocity and quasitemperature,
respectively, for several strengths of the applied electric field. These figures permit
us to characterize the presence of an overshoot in both the electron drift velocity and
quasitemperature for a high enough electric field strength. It can be noticed that the velocity
overshoot occurs for fields higher than, roughly, 20 kV cm−1 in GaN, 40 kV cm−1 in AlN,
and 20 kV cm−1 in InN. The intensity of the overshoot in the electron drift velocity is quite
similar for all the III-nitrides, but it arises a little earlier (∼0.05 ps) in GaN and AlN than in
InN (>0.05 ps) for the same value of the electric field strength. The pattern of the overshoot in
the electron quasitemperature is similar to that of the velocity overshoot, as can be noticed by
comparing figures 1 and 2. Moreover, it is verified that the peak in the drift velocity follows in
the time interval where the drift kinetic energy increases more rapidly than the thermal energy,
and the peak in electron quasitemperature can be related to a minimum of the quotient of these
two energies. The exception is when InN is subjected to a 50 kV cm−1 electric field such that
as a result the intervalley scattering begins to become effective: at this point the calculation
shows the emergence of a runaway effect which is a spurious one, resulting from the fact that
in our calculations we have neglected side valleys, and therefore we cannot carry on the analysis
beyond this point within the single-band valley model [29].

Pursuing the search for evidencing the conditions for the electron drift velocity overshoot,
let us investigate the time evolution of the characteristic time for conduction (equation (15)) and

7
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Figure 3. Evolution towards the steady state of the energy relaxation time for electrons in GaN
(top), AlN (middle), and InN (bottom).

the momentum and energy relaxation times (see the appendix). Figure 3 shows the evolution
of the energy relaxation time for the three III-nitrides we are analysing, which is monotonically
decreasing and presents a similar behaviour for all the field strengths we have considered.
This is also the case of the momentum relaxation time as shown in figure 4, which at low
to intermediate fields varies smoothly. However, with increasing field strength the smooth
behaviour changes to another one, which shows, for a threshold field strength, a very rapid
(somewhat steep) decrease in the very earlier stages of evolution. This phenomenon is the one
responsible for the onset of the overshoot in current, what can be characterized in the following
way. At the maximum of the overshoot at, say, time t̄ , the time derivative of the electron
drift velocity is null and the curvature (second derivative) is negative. Let us consider first the
condition of the maximum, which implies that at t̄

d

dt
ve(t)

∣∣∣∣
t̄

= e

m∗
e

E − ve(t̄)

τPe(t̄)
= 0, (20)
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according to equation (13). On the other hand, differentiating in time equation (14), we have at
t = t̄ that

d

dt
ve(t)

∣∣∣∣
t̄

= eE
m∗

e

d

dt
τce(t)

∣∣∣∣
t̄

= 0, (21)

but using equation (15) it follows that

d

dt
τce(t)

∣∣∣∣
t̄

= − τce(t̄)

τPe(t̄)
+ 1 = 0, (22)

and then, at t̄ ,

τce(t̄) = τPe(t̄), (23)

that is, the characteristic time for current and the momentum relaxation time are equal, and
then overshoot can only follow in conditions allowing for them to cross (i.e. for sufficiently
high values of the electric field strength).

9
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In figure 5 is shown the ratio r(t) = τce(t)/τPe(t), for five values of the electric field in the
case of GaN and AlN, and three values in the case of InN. At low electric field strength such
ratio increases monotonically, tending to the value 1 when the steady state is being achieved,
and then the momentum relaxation time and the characteristic time for current coincide. It
can be noticed that, in the earlier stages of evolution of the nonequilibrium macroscopic
(thermodynamic) state of the system, at intermediate to high fields, the characteristic time
for the current becomes larger than the momentum relaxation time, and there follows velocity
overshoot. This is a result of the fact, already noticed on inspection of figure 5, that whereas the
momentum relaxation time varies smoothly in time when in the presence of low to intermediate
fields, at intermediate to strong fields it changes abruptly, decreasing in a subpicosecond time
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scale. The transition from the, say, normal regime to one displaying overshoot occurs around a
field of 20 kV cm−1 for GaN, 40 kV cm−1 for AlN, and 20 kV cm−1 for InN.

It can be noticed that at low fields the curvature of v(t) is monotonically negative (convex)
and smooth. But at higher fields, such that the condition for the emergence of overshoot is
satisfied, the curvature at t̄ is more and more pronounced for increasing field intensities, and
afterwards the curvature changes from convex to concave. At the maximum curvature at t̄ ,

d2

dt2
τce(t)

∣∣∣∣
t̄

= − 1

τPe(t̄)

dτce(t)

dt

∣∣∣∣
t̄

+ τce(t̄)

τ 2
Pe

(t̄)

dτPe(t)

dt

∣∣∣∣
t̄

< 0, (24)

and since dτce/dt|t̄ = 0, it follows that
dτPe(t)

dt

∣∣∣∣
t̄

< 0, (25)

and decreasing more rapidly with increasing field strength, thus increasing the (convex)
curvature at the maximum of the overshoot. We recall that the changes in the momentum
relaxation time are a consequence of the evolution of the nonequilibrium macrostate of the
system, more precisely of the quasitemperatures of electrons and of optical LO phonons and of
the drift velocity. Hence, the momentum relaxation time also depends indirectly on the energy
relaxation time: the steep decrease of the momentum relaxation time in the earlier stages of
evolution, when in the presence of intense fields, follows from, mainly, the strong ‘heating’ of
the carriers and the ‘warming’ of the optical phonons, what enhances the scattering probability.

4. Concluding remarks

Shrinkage of the channel dimensions in III-nitride-based devices to a submicron scale (but
beyond the 10 nm scale, where ballistic transport takes place [15]), imposes working conditions
in which the transient transport characteristics would be important for contributing to a better
performance. In a study of such transient characteristics, in the present work, resorting
to the NESEF-based nonlinear quantum kinetic transport theory [20, 30], we derived the
nonequilibrium time-dependent thermodynamic description of III-nitrides under electric fields
of intermediate to strong strengths (<120 kV cm−1), which allowed for a clear characterization
of the drift velocity overshoot onset in terms of the interplay of momentum and energy
relaxation times, which is not possible through Monte Carlo simulation or a Boltzmann-like
balance equation in the momentum relaxation time approximation. Although disregarding
intervalley scattering (which imposes limitations on the values of the field intensity to be
used, as discussed in the text), the moderated electric field intensities drive the systems well
in the hot-electron transport regime [27], described through an instantaneous and drifted
Maxwell–Boltzmann-like distribution in which the electron quasitemperature (∼103 K; we
recall that it is a measure in kelvin degrees of the energy pumped on the system by the external
source [21, 28, 31]) is well above the temperature in equilibrium.

Within the parabolic band scheme approach, we have established clear conditions for
overshoot onset of both the electron drift velocity and the quasitemperature in GaN, AlN,
and InN for electric field strengths higher than 20 kV cm−1, 40 kV cm−1, and 20 kV cm−1,
respectively. Since the drift velocity at the overshoot peak is only about 20% higher than at its
steady-state value, the possible contribution of the transient characteristics to the improvement
of GaN, AlN (InN) nitride-based heterojunction field effect transistors should be very limited
for electric fields smaller than 120 kV cm−1 (60 kV cm−1). Finally, our work highlights the
importance of considering evolution equations for the energy of longitudinal phonons in III-
nitrides, without which it is not possible to evidence the smooth overshoot effect on the carriers’
quasitemperature, and how it is related to the drift velocity overshoot.

11



J. Phys.: Condens. Matter 19 (2007) 346214 C G Rodrigues et al

Acknowledgments

We acknowledge financial support provided by the São Paulo State Research Agency (FAPESP)
and the Brazilian National Research Council (CNPq) through the grant NanoBioEstruturas
Project; ARV, VNF, and RL are CNPq Research Fellows.

Appendix. The relaxation times

The collision integral in equation (3), for the evolution of the energy, is given by [29]

J (2)

E = 2π

h̄

∑

k,q

|M(q)|2(εe
k+q − εe

k)[νLO(t) f e
k (t)(1 − f e

k+q(t))

− f e
k+q(t)(1 + νLO(t))(1 − f e

k (t))]δ(εe
k+q − εe

k − h̄ωLO), (A.1)

where εe
k = h̄2k2/2m∗

e , the population f e
k (t) is given in equation (9), νLO(t) in equation (10),

and M(q) is the matrix element in Fröhlich interaction.
The collision in equation (4), for the evolution of the momentum, is given by [29]

J(2)
Pe

= 2π

h̄

∑

k,q

h̄q|M(q)|2[νLO(t) f e
k (t)(1 − f e

k+q(t))− f e
k+q(t)(1 + νLO(t)) × (1 − f e

k (t))]

× δ(εe
k+q − εe

k − h̄ωLO). (A.2)

We recall that these results follows from the NESEF-based nonlinear quantum kinetic
theory [20, 30], but they are given in the lowest order in the interaction strength which consists
in taking the Markovian approximation in the theory [20, 30, 32]. It can be noticed that they
have the form of the Golden Rule of Quantum Mechanics but averaged over the time-dependent
nonequilibrium statistical ensemble.

Going from the sum in k to integration and performing the calculation, it follows that

J (2)
Ee

(t) = nV (eωLO)2
√

2m∗
e/πkBT ∗

e (t)

(
1

ε∞
− 1

ε0

)
exp{z(t)/2}

× [νLO(t) − (1 + νLO(t)) × exp{−z(t)}]K0(z(t)/2), (A.3)

and

J(2)

Pe,PO(t) = √
2/9πnV (eωLO)2(m∗

e/kBT ∗
e (t))3/2

(
1

ε∞
− 1

ε0

)
exp{z(t)/2}

× {[νLO(t) − (1 + νLO(t)) exp{−z(t)}]K0(z(t)/2)

− [νLO(t) + (1 + νLO(t)) exp{−z(t)}]K1(z(t)/2)}ve(t), (A.4)

where z(t) ≡ h̄ωLO/kBT ∗
e (t), Kn are Bessel functions of the second kind, ε0 and ε∞ are the

static and optic dielectric constants, and V is the volume of the system.
Finally, in equation (4), J (2)

ELO
(t) is equal, but with a change of sign, to J (2)

Ee
(t), since it is

the gain of energy of the LO phonons provided by the relaxing—through Fröhlich interaction—
‘hot’ electrons.
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